bearings and oil flow



bearings and oil flow

Postby grumpyvette » September 19th, 2008, 1:19 pm

Bearings and oil flow

viewtopic.php?f=53&t=88

http://www.babcox.com/editorial/us/us90126.htm

http://www.insightservices.net/testoil/ ... cation.htm

http://www.thirskauto.net/BearingPics.html

http://micapeak.com/info/oiled.html

http://www.unofficialbmw.com/all/misc/all_oilfaq.html

http://www.fd3s.net/oil_pressure.html

http://www.aa1car.com/library/us1097.htm

Image

http://engineparts.com/it_crankinstall.asp

http://engineparts.com/it_bearinginstall.asp

http://engineparts.com/techbulletins/CL77-1-205R.pdf

http://www.micapeak.com/info/oiled.html

http://www.nordicgroup.us/oil.htm

http://www.carbibles.com/engineoil_bible.html

http://data.melling.com/Select/small_block_chevy.php

http://data.melling.com/Select/big_block_chevy.php

http://www.thirskauto.net/Engine_Thrust_Bearings.html

http://www.engineparts.com/motorhead/te ... stall.html

http://www.babcox.com/editorial/ar/ar20128.htm

http://www.babcox.com/editorial/cm/cm99828.htm

http://www.thirskauto.net/Engine_Thrust_Bearings.html

http://www.diabolicalperformance.com/clearances.html

http://www.babcox.com/editorial/ar/ar10180.htm

http://data.melling.com/TECH.php

http://www.babcox.com/editorial/ar/eb110127.htm

http://theoildrop.server101.com/forums/ubbthreads.php

http://minimopar.knizefamily.net/oilfilterstudy.html

from chevy high performance mag

Image

Image

Image
Image

with the engine up to operational temp.of between about 180f-210f
and using an oil viscosity that maintains at least 15-20 psi at hot idle in traffic,
your engine should maintain a MINIMUM of 10 psi per 1000rpm and max out pressure at about 4500-5500rpm at 60psi or higher
remember the thicker the oil the harder it is to force thru the clearances in the engine, and pressure is how you measure the RESISTANCE to oil flow, but you should use an oil viscosity that at least maintains that 15-20 psi at idle

one factor thats frequently over looked is that many bearing manufacturers don,t seem to have placed the bearing oil feed holes in bearing shells so they exactly match the oil feed passages in the engine blocks
example heres a common minor mis-match on the bearing shell/oil passage alignment
Image

but Ive seen some where over 1/3-to-1/2 the oil feed hole was blocked due to misalignment, thats usually easily cured, by drilling a shallow increased diameter recess in the blocks oil passage to open it to match the bearing or opening up the bearing feed hole, but which ever route you take be sure to carefully clean and deburr both
Image

increasing the groove, from 180 deg to 270 deg, lowers bearing support, increases oil flow rates and tends to increase wear

Image

As you'll see in Figure 1, below two different types of grooved upper main bearing shells

Image
the oil groove terminates before it gets to the bearing parting line. This style of main bearing has accounted for a 15 percent or more increase in hot idle oil pressure. So if you're looking to eliminate some of those unexplained low oil pressure gremlins contact your bearing manufacturer and ask about this style bearing and availability for the engine applications that you are building.

keep in mind only the upper main bearing shell should have an oil groove, having a 360 degree oil groove lowers the bearing ability to handle high rpm loads

Image
THESE BEARING PICTURED ABOVE, LOOK GREAT BUT HAVE LOWER LOAD CAPACITY
Image
these CLEVITE (H) SERIES, ABOVE MAY NOT LOOK AS GOOD BUT HAVE HIGHER LOAD CAPACITY AND BEVELED EDGES FOR THE CRANK FILLETS, or ROUNDED CORNERS ON THE JOURNALS THAT INCREASE STRENGTH LIKE ON THE CRANK BELOW
Image
Image
Image
Introduction:
The main bearing oil groove is required for the sole purpose of supplying oil to the
connecting rod big end bearing. At one time it was common to have a full 360° groove on the
main bearing to provide an uninterrupted supply of oil to the big end by means of a single
drilling from the main journal. This was achieved by having identical upper and lower bearing
shells.
As bearing loads increased this design proved unsustainable as the oil film thickness, on
which every crankshaft bearing relies, became insufficient for reliable main bearing
operation. The solution was to increase the bearing area on the more heavily loaded lowerhalf
bearing by reducing the extent of the groove to around 230° or even 180° in order to
provide a single bearing land of greater width. Any increase in bearing width enables a
higher oil film pressure to be sustained as the distance from the centre of the bearing to the
edges, which cannot sustain an oil pressure, is increased. This in effect allows the
generation of a thicker oil film with which to separate the shaft and bearing shell.
The reduced oil groove extent would sometimes be compensated by a cross-drilling on the
main journal in an attempt to maintain an uninterrupted supply of oil to the big end bearing.
However, in many cases it was found that the big end could cope very well with the
subsequent intermittent oil flow offered by a single drilling from a 180° groove.
Nowadays, with the use of computer simulation and engine testing the optimum extent of the
groove may be determined. It is not now just a case of allowing the big end to survive but
that the efficiency of the bearing system can actually be improved by due attention to the
groove geometry. This is because the big end bearing, like any hydrodynamic lubricated
bearing, will use as much oil as it needs to generate an oil film for any given operating
condition. Any less than this amount risks disrupting the oil film and ultimately starving the
bearing of oil, but equally, feeding excessive oil to the bearing simply results in additional
leakage, and reduced efficiency. Therefore, the oil groove, like many other features on a
bearing shell, can be optimised.

read thru these links

http://vandervell.co.uk/images/slidesho ... forman.pdf

http://www.stealth316.com/misc/clevite- ... ooving.pdf
Image
Image

TB 2051 2/10/2000
Influence of Grooving on Main Bearing Performance
Various forms of main bearing grooving have been used over the years. We are
frequently asked what difference grooving makes.
First, it’s essential to understand that bearings depend on a film of oil to keep them
separated from the shaft surface. This oil film is developed by shaft rotation. As the shaft
rotates it pulls oil into the loaded area of the bearing and rides up on this film much like a
tire hydroplaning on wet pavement. Grooving in a bearing acts like tread in a tire to break
up the oil film. While you want your tires to grip the road, you don’t want your bearings
to grip the shaft.
The primary reason for having any grooving in a main bearing is to provide oil to the
connecting rods. Without rod bearings to feed, a simple oil hole would be sufficient to
lubricate a main bearing. Many early engines used full grooved bearings and some even
used multiple grooves. As engine and bearing technology developed, bearing grooving
was removed from modern lower main bearings. The result is in a thicker film of oil for
the shaft to ride on. This provides a greater safety margin and improved bearing life.
Upper main shells, which see lower loads than the lowers, have retained a groove to
supply the connecting rods with oil.
In an effort to develop the best possible main bearing designs for High Performance
engines, we’ve investigated the effects of main bearing grooving on bearing performance.
The graphs on the next page illustrate that a simple 180
°
groove in the upper main shell is
still the best overall design.
While a slightly shorter groove of 140
°
provides a marginal gain, most of the benefit is to
the upper shell, which doesn’t need improvement. On the other hand, extending the
groove into the lower half, even as little as 20
°
at each parting line (220
°
in total), takes
away from upper bearing performance without providing any benefit to the lower half.
It’s also interesting to note that as groove length increases so do Horsepower Loss and
Peak Oil Film Pressure which is transmitted directly to the bearing
IF YOU CAN,T SMOKE THE TIRES AT WILL,FROM A 60 MPH ROLLING START YOUR ENGINE NEEDS MORE WORK!!"!
IF YOU CAN , YOU NEED BETTER TIRES AND YOUR SUSPENSION NEEDS MORE WORK!!
grumpyvette

User avatar
Site Admin
Site Admin
 
Posts: 14105
Joined: September 14th, 2008, 1:40 pm
Location: florida

Re: bearings and oil flow

Postby grumpyvette » January 16th, 2009, 11:03 pm

http://www.daymotorsports.com/product/1 ... NG-SPACERS
KING BEARING SPACERS
Part Number Description Price Qty Add
EB-MB5224AM Chevy 350 to 400 Spacer $49.99

http://www.speedwaymotors.com/MAIN-BEAR ... K,533.html

400 sbc block/350 crank main bearing spacers

theres also TRW MS3110P is the part number for a main bearing set to put a standard pre 1968 small journal (283, 265, sj327) crank into a medium journal (350) block

http://www.chevyhiperformance.com/techa ... index.html

IT should be obvious that you'll need to pre-prime the blocks oil passages and adjust the rockers so oil flows from the rockers with the engine being pre-primed with a priming tool being used BEFORE trying to start any engine with a new cam to insure oil flow begins instantly on the engines start-up,you WON,T get oil to all lifters equally unless the engines crank & cam are spinning,(so during testing spin the engine slowly with a breaker bar or ratchet), because the oil passages feeding the lifters aligns differently at different lifts,your oil leak at the distributor base is normal, but the clearances and flow may be excessive, with a priming tool, some are not nearly to spec. ID measure the diam. of the oil pump primer and then measure the distributor base, Id bet the distributor base is larger and fits better, which reduces the potential for leakage.
Image
those bottom two bands form a wall on the oil passage, some guys cut a rounded grove and install an O-RING so the upper band seals too the block, you don,t want to do that to the lower band simply because that's the oil flow source to the distributor /cam gear
20 psi is about normal for your typical 3/8 drill,max pressure is not nearly as important as checking flow, and for leaks where there should not be leaks, with an engine primer tool,Ive brazed a socket to the top of my oil pump primer and use the 1/2" drive air ratchet to drive it, it won,t heat up and burn up like a electric drill will.
don,t get alarmed if you get zero pressure or flow for a few seconds,(the oil filter and passages need to fill first) that's one reason WHY your pre-priming, to get oil flow to the bearings instantly on start up , you don,t want them running without oil flow if you can prevent it even for 20 seconds
IF YOU CAN,T SMOKE THE TIRES AT WILL,FROM A 60 MPH ROLLING START YOUR ENGINE NEEDS MORE WORK!!"!
IF YOU CAN , YOU NEED BETTER TIRES AND YOUR SUSPENSION NEEDS MORE WORK!!
grumpyvette

User avatar
Site Admin
Site Admin
 
Posts: 14105
Joined: September 14th, 2008, 1:40 pm
Location: florida

Re: bearings and oil flow

Postby grumpyvette » August 8th, 2009, 9:44 pm

IF your having excessive oil heat problems with an engine, my
first suggestion swap to a decent synthetic oil in the 10w30 range or at least the thinnest viscosity that maintains 20 psi at hot idle temps, as SYNTHETICS don,t generally start breaking down until about 280F PLUS while mineral base oils tend to start degrading after repeated 250F use, and the thinner the oil the faster it circulates thru the clearances, and the faster heats absorbed and transferred out off the hotter components
and Id need to know more about the complete engine parts list, clearances, etc. but Id sure want to verify the fuel/air ratio is at about 12.6:1 not alot leaner and your ignition timing was carefully checked to not be a couple degrees advanced from ideal., and that your running a 7-8 quart oil pan, heres the oil cooler I use and I had to install a thermal switch or it OVER COOLED my engine oil in FLORIDA where average outside air temps closer to 90F
oil does most of an engines real cooling and the cooling system allows heat absorbed by the oil and transferred to the block to be transferred to the coolant and removed, but a significant percentage of that heat can be removed if an efficient oil cooler is installed, that maintains a significantly lower average oil temp while the engines under stress., think about it a second. the HOT PARTS like rings, valves, cams, lifters, bearing surfaces and valve springs and pistons get cooled mostly by oil splash or pressurized oil flow not direct coolant contact

my oil pan looks similar to this
http://canton.carshopinc.com/product_in ... 88bb985ecf
Canton Oil Pans
11-120 and 11-120T Oil Pans
Image

but I extended the sump forward with 14 ga steel and a tig welder to add 4 inches extra to the sump to get 10 qt capacity

http://www.summitracing.com/parts/PRM-1 ... mage=large


Image

But I was always under the impression that Chevys liked thicker mineral oils, and I should avoid synthetics? Not true then?

NOT TRUE, TRY THE THINNER SYNTHETIC OIL, as LONG AS YOU HAVE A MINIMUM of 20 PSI at hot idle your fine!
IVE run a MIX of 90%/ synthetic 10% mineral oil in my race cars for many years

usually 1 qt MARVEL MYSTERY OIL, 9 qts MOBILE 1 10w30 synthetic

http://www.marvelmysteryoil.com/

https://www.mobiloil.com/USA-English/Mo ... /Oils.aspx


obviously these won,t fit all chevy applications but if you have the room for the longer, spin on filters

The "longer high capacity oil filter" Purolator is L40084.

"longer high capacity oil filter" N.A.P.A: # 1794

"longer high capacity oil filter" ACDelco: PF932


keeping the oil cool basically comes down to having the oil flow thru both the engine and the cooler but having the surface area of the cooler large enough and the number of passes thru the cooler ,allow the oil to transfer most of the heats its absorbed in the engine back out into the air flowing thru the cooler,before its routed back to the engine,and that generally requires ducting cool air into the cooler and placing it where the flows not restricted, on my corvette I removed the rear spare tire, and built a mount that allowed a good deal of clearance and no significant engine heat, with it working all the time I had problems getting the heat over 220 f and it mostly stayed at or near 200f,theres basically about 3 qts in the upper engine and oil passages at any time , absorbing heat so having a similar volume in the cooler, releasing heat during the same time makes sense, and having a similar amount in the baffled oil pan sump and filter sure helps,naturally if you have the oil routed to spend more time with the majority of the oil being heated and less of the oils times spent cooling average temperatures rise rapidly
IF YOU CAN,T SMOKE THE TIRES AT WILL,FROM A 60 MPH ROLLING START YOUR ENGINE NEEDS MORE WORK!!"!
IF YOU CAN , YOU NEED BETTER TIRES AND YOUR SUSPENSION NEEDS MORE WORK!!
grumpyvette

User avatar
Site Admin
Site Admin
 
Posts: 14105
Joined: September 14th, 2008, 1:40 pm
Location: florida

Re: bearings and oil flow

Postby grumpyvette » August 13th, 2009, 9:42 am

theres some confusion as to the correct oil pan size and dip stick markings,, ILL try to keep this simple, basically the oil pan should never be less than a 5 qt capacity in a performance application, and as long as clearances under the car permit a 6-7-8 or larger capacity baffled oil pan with a windage screen is preferred, some guys will suggest restricting oil flow return routes to the sump by installing lifter valley breather tubes, but a decent cranl scraper and windage screen on a high capacity baffled oil pan reduces windage losses significantly, and that oil cools the pistons, rings and cam and lifters so reducing its ability to cool and lube those components by restricting flow is not a great idea

theres about 2-3 quarts of oil in a running engine thats not sitting in the sump, around the oil pump that lowers the oil pan oil level a good deal, normal 5 qt oil pans still have 2-3 qts around the pickup, but that lowers the oil level in the oil pan in most cases about 2-3 inches while the engine runs, so most dip sticks measure the correct oil level as about 2" up on the crank counter weights, because once the engines spinning that puts the oil level below the windage screen or at least below the spinning crank.
DIP STICKS are NOT always correctly marked,you should be able to research your oil pans intended capacity, Id suggest running NO LESS than a 5qt capacity oil pan and a baffled 6-7-8 qt is vastly preferable if your not sure add 5 qts to an empty oil pan and start the engine for a minute to fill the oil filter and oil passages, then look at where the oil level is in relation to the indicator band on the dip stick so you know what the minimum level should be, if its significantly lower than the dipstick marks, add the required oil level the pans rated for and pay attention to the dipstick.
just remember oil levels drop several inches once the engines running and as the rpms increase the level tends to drop slightly more, your very unlikely to (PUMP THE PAN DRY) like you commonly hear as a MYTH with the high volume oil pumps, because hot oil with a well designed oil pan and windage tray drains back into the sump quickly and the vast majority of the oil never makes it to the upper engine as its leaking from rod, man and cam bearings and lifter bores and gets swept back into the sump.
now it should be obvious that to use a high volume oil pump you need a MATCHING high capacity baffled oil pan and windage screen to CONTROL the extra oil flow rates, and the bearing, and other engine clearances and oil drain holes in the block should be designed to use the extra oil flow.

viewtopic.php?f=54&t=64

viewtopic.php?f=54&t=525

viewtopic.php?f=54&t=615
IF YOU CAN,T SMOKE THE TIRES AT WILL,FROM A 60 MPH ROLLING START YOUR ENGINE NEEDS MORE WORK!!"!
IF YOU CAN , YOU NEED BETTER TIRES AND YOUR SUSPENSION NEEDS MORE WORK!!
grumpyvette

User avatar
Site Admin
Site Admin
 
Posts: 14105
Joined: September 14th, 2008, 1:40 pm
Location: florida


Return to Oil and Lube Systems

Who is online

Users browsing this forum: No registered users and 3 guests